Physics

Review Guide - Kinematics in One Dimension

Chapter 4 (text) Linear Motion \& Chapter 2 (Problem Solving Workbook) Motion
Definitions: Define the following vocabulary words. If needed, use examples (equation) in your definitions. Compare and Contrast (i.e. explain similarities and differences for various related word pairs.)

1. Relative Motion
2. Distance
3. Displacement
4. Speed
5. Instantaneous Speed
6. Average Speed
7. Instantaneous Velocity
8. Acceleration
9. Instantaneous Acceleration
10. Free Fall
11. Elapsed Time
12. Acceleration due to gravity
13. Velocity

Know Significant Figures and Units: Your answers to all problems should be in the appropriate Significant Figures and include the correct units.

Conversions - Be able to convert from any unit(s) to any other(s) using a conversion factor.

Problem Solving

$\mathrm{V}=\Delta \mathrm{d} / \Delta \mathrm{t}$	$\mathrm{a}=\left(\mathrm{V}_{\mathrm{f}}-\mathrm{V}_{\mathrm{i}}\right) / \mathrm{t}$			
$\mathrm{v}=\mathrm{v}_{0}+\mathrm{at}$	$\Delta \mathrm{d}=\mathrm{v}_{0} \mathrm{t}+1 / 2 \mathrm{at}^{2}$	$\mathrm{v}=\left(\mathrm{v}+\mathrm{v}_{0}\right) / 2$		$\mathrm{~g}=-9.8 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{v}^{2}=\mathrm{v}_{0}{ }^{2}+2 \mathrm{a} \Delta \mathrm{d}$	$\mathrm{x}=\mathrm{y}$	$\mathrm{a}=\mathrm{g}$		

Time, Distance, \& Velocity
(Example: Exercise 1, 2, 3, 4, \& 8 pg $14 \& 15$.)

Acceleration

(Example: Exercise 5, 6, \& 7 pg $14 \& 15$.
Free fall
Example: Exercise $9-14$ pg 18 \& 19
Exercise A11, A-12, \& A-15
Free fall with initial velocity (Rising Objects in text on page 55.)
(Example: Questions: 47, 48, \& 54 pg .66 (text) and my example at the end of your notes (Solutions 11/11/14 in PCR).
8040

Internet Site: - http://northwoodschoool.org/mattroy/

Tutorials, animations, demonstrations and other good stuff

